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Abstract

Training large foundation models from scratch for
domain-specific applications is almost impossible due to
data limits and long-tailed distributions — taking remote
sensing (RS) as an example. Fine-tuning natural image pre-
trained models on RS images is a straightforward solution.
To reduce computational costs and improve performance on
tail classes, existing methods apply parameter-efficient fine-
tuning (PEFT) techniques, such as LoRA and AdaptFormer.
However, we observe that fixed hyperparameters — such as
intra-layer positions, layer depth, and scaling factors, can
considerably hinder PEFT performance, as fine-tuning on
RS images proves highly sensitive to these settings. To ad-
dress this, we propose MetaPEFT, a method incorporating
adaptive scalers that dynamically adjust module influence
during fine-tuning. MetaPEFT dynamically adjusts three
key factors of PEFT on RS images: module insertion, layer
selection, and module-wise learning rates, which collec-
tively control the influence of PEFT modules across the net-
work. We conduct extensive experiments on three transfer-
learning scenarios and five datasets in both RS and natural
image domains. The results show that MetaPEFT achieves
state-of-the-art performance in cross-spectral adaptation,
requiring only a small amount of trainable parameters and
improving tail-class accuracy significantly.1

1. Introduction
Training large foundation models from scratch for domain-
specific applications presents fundamental challenges, par-
ticularly in domains with limited data availability and se-
vere data imbalance issues. Take the remote sensing (RS)
domain as an example. RS image recognition has critical
applications in environmental monitoring, resource man-
agement, and disaster response [40, 58, 63]. However,

1 Code: https://github.com/doem97/metalora

learning large foundation models (e.g., CLIP [43] and Sta-
ble Diffusion [44]) on RS data presents three fundamen-
tal challenges. First, RS data exhibits high spectral di-
versity, encompassing different spectral bands from opti-
cal remote sensing (ORS, 400-700nm) to synthetic aper-
ture radar (SAR, 1mm-1m), which capture distinct phys-
ical properties of Earth’s surface [14, 46]. This spectral
diversity poses challenges for developing generic, cross-
band models [21, 52]. Second, although large foundation
models are prevalent in natural image domains, it is im-
practical to train dedicated foundation models for each RS
spectral band due to data scarcity [14, 18, 64] and the pro-
hibitive computational resources required for training or
fine-tuning [7]. Third, RS data often displays a long-tailed
distribution [6, 32, 54, 60], which causes fine-tuned foun-
dation models to overfit to limited training samples in tail
classes, resulting in poor generalization [50].

Adapting models from natural image domains to RS
domains has become a more feasible and practical ap-
proach than training models from scratch. Compared to the
resource-intensive process of full fine-tuning, Parameter-
Efficient Fine-Tuning (PEFT) has emerged as a more ef-
ficient adaptation method for foundation models. PEFT
includes various techniques, such as LoRA [25], Adapt-
Former [5], and BitFit [57]. The common idea is to update
only a small subset of parameters while keeping the pre-
trained weights of the foundation models frozen. This ap-
proach reduces computational and data requirements, pre-
serves general knowledge learned in natural image do-
mains [55], and reduces overfitting in tail classes [47, 50].

In this paper, we conduct a comprehensive study of var-
ious PEFT methods in the RS domain and propose our im-
proved method called MetaPEFT that is generic and more
efficient than any individual technique of PEFT. Specifi-
cally, we study five representative PEFT methods:2 a se-
lective method called BitFit [57]; three additive methods
respectively called LoRA [25], Adapters [23], and Adapt-

2We provide detailed PEFT taxonomy and our classification criteria of
LoRA in Section 2.

https://github.com/doem97/metalora
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Figure 1. Comparing PEFT methods for the model adaptation of IN21K → DOTA. (a) Bubble plot of overall accuracy, tail-class
accuracy, and performance variance (in standard deviation) of 5 PEFT methods in 6 total versions. Additive methods exhibit consistently
higher accuracy and lower variance than non-additive methods. (b) Inter-class feature distances of the PEFT methods measured by cosine
similarity. Additive methods achieve 13% further feature distances (which means better discrimination among tail classes) with comparable
head-class distances. (c) Accuracy heatmap for applying PEFT on different positions of ViT: on different intra-block layers v.s. among
different attention blocks (depth). Deeper blocks yield better performance (86.5% to 90.4%), but the combination of optimal block and
intra-block position shows unexpected degradation (0.6% drop for FFN layer with depth 10→11). The marks optimal combination. (d)
Accuracy heatmap of intra-block positions v.s. scaling factors. Different positions show distinct sensitivity to scaling factors, with sharp
accuracy drops observed (e.g., applying PEFT on the attention output layer (denoted as Out) drops from 87% to 6.7% when its PEFT
scaling factor increases from 2 to 4). These highlight the non-monotonic complexity of PEFT hyperparameters.

Former [5]; and a soft-prompt method called VPT [27]. We
make two key observations. First, additive methods out-
perform non-additive methods in both performance and sta-
bility. As shown in Figure 1(a), additive methods consis-
tently achieve higher overall accuracy and tail-class accu-
racy while maintaining lower performance variance (repre-
sented by bubble size). Similar observations in the NLP
domain [24] and natural image domain [20] suggest that
such superiority stems from both architectural design (zero-
initialization) and hyperparameter choice (scaling factor).
Zero-initialization ensures that parameter updating starts
from the pre-trained state, while the scaling factor preserves
update directions and modulates only magnitudes. Second,
additive methods achieve better tail-class feature discrim-
ination. As visualized in Figure 1(b), additive methods
achieve 13% higher inter-class feature distances by aver-
age (using cosine distance) for tail classes while maintain-
ing comparable distances for head classes. We attribute this
improvement to its flexibility in insertion positions. For ex-
ample, the soft-prompt method VPN operates only at input
layers. In contrast, additive modules like LoRA and Adapt-
Former can be inserted at diverse positions (e.g., across at-
tention blocks of ViT and on the Q/K/V [25] or FFN lay-
ers [5] of any attention block). Such flexibility enables ef-
fective model adaptation without needing large-scale train-
ing data, benefitting tail classes [29, 56]. We thus use addi-
tive PEFT as a strong baseline to tackle RS tasks.

We found that additive methods vary mainly based on
three key hyperparameters: adaptation position inside an

individual attention block, adaptation position across at-
tention blocks (depth), and scaling factors.3 For exam-
ple, LoRA applies its low-rank adaptation to Q/K/V layers,
while AdaptFormer applies its adaptation weights to FFN
layers. We conduct thorough ablation studies on these three
hyperparameters and present the resulting heatmap visual-
izations in Figures 1(c) and 1(d). From the figures, we make
two key observations. 1) Model performance exhibits high
sensitivity to both hyperparameters. Specifically, accuracy
varies by 86% across scaling factors (from 8.1% to 91.1%
on the K projection layer), 4.0% across attention block
depths (from 86.5% in block 1 to 90.5% in block 11), and
2.4% across intra-block positions (from 90.4% on K projec-
tion layer to 92.8% on FFN layer). 2) Individual hyperpa-
rameters demonstrate monotonic trends, e.g., deeper inser-
tion positions generally lead to better performance in Fig-
ure 1(c). Their combinations show complex non-monotonic
effects in Figure 1(d). In other words, combining individ-
ually optimal hyperparameters often leads to unexpected
performance degradation, e.g., using optimal intra-block
position (i.e., FFN) with optimal block depth (i.e., depth
11) results in a 0.6% accuracy drop. Although an exhaus-
tive search might handle these non-monotonic effects, it is
computationally infeasible due to the large configuration
space of complexity O(L|S|Nα) (Section 3.2). Moreover,
gradient-based optimization is infeasible as PEFT hyperpa-
rameter tuning poses a mixed discrete-continuous optimiza-

3Other relevant but less significant hyperparameters, such as module
size and initialization, will be discussed in the Appendix.



tion problem: jointly optimizing discrete positions and con-
tinuous scaling factors (elaborated in Section 3.2). These
challenges motivate us to develop an efficient end-to-end
hyperparameter optimization method for PEFT.

Specifically, we propose a meta-learning method called
MetaPEFT, by introducing two key designs: 1) a uni-
fied modulator of three PEFT-specific hyperparameters (i.e.,
intra-attention-block position and attention-block depth on
ViT, and the scaling factor of PEFT) and 2) a bi-level opti-
mization framework to learn this modulator without need-
ing additional training data. First, the unified modula-
tor contains a set of scalars, each applied to an individ-
ual PEFT position (e.g., a Q/K/V projection layer, attention
output layer (denoted as Out), or an FFN layer in the atten-
tion block of ViT-B/16), without introducing large overhead
(e.g., less than 800 additional parameters for LoRA on ViT-
B/16). This modulator controls both PEFT’s insertion posi-
tion and scaling factor: when the value of a scalar is close to
zero, the PEFT is deactivated at the corresponding position
(of the scalar); when this value is significantly high, its mag-
nitude determines “how strong PEFT is for the adaptation”.
Introducing this modulator makes gradient-based optimiza-
tion possible due to its differentiable nature. Second, we op-
timize this modulator through a bi-level optimization frame-
work with two alternating loops: the inner loop trains the
model parameters with the modulator (i.e., all scalars) fixed,
and the outer loop optimizes the modulator on a randomly
sampled subset of training data in each iteration. This dy-
namic sampling exposes optimization to diverse data sub-
sets. It hence prevents overfitting, especially effective for
tail classes (e.g., 3.5 times higher accuracy improvement
for tail classes than head classes on the setting of “SatMAE
→ SAR”, with LoRA as a baseline). Empirically, we found
that direct optimization often leads to numerical instability
(i.e., negative values); thus, we apply softplus activation to
constrain the modulator to be non-negative. In summary,
our MetaPEFT has three key advantages: 1) it converts the
mixed discrete-continuous optimization problem into a dif-
ferentiable formulation, thereby allowing gradient-descent-
based optimization; 2) it automatically discovers the opti-
mal adaptation strength for each position; and 3) its dy-
namic sampling of meta-learning samples (i.e., validation
samples) greatly reduces model overfitting to tail classes.

2. Related Works
Long-tailed Model Adaptation. Long-tailed learning ap-
proaches in computer vision can be categorized into three
main strategies: data manipulation through re-sampling
and re-weighting techniques exemplified by cRT [29] and
BBN [62], representation learning via contrastive learn-
ing as demonstrated by PaCo [8], and classification objec-
tive modification methods such as LDAM [3] and Focal
Loss [45]. However, training from scratch often yields sub-

optimal results compared to leveraging pre-trained mod-
els [56]. Recent works explore foundation models like
CLIP, where BALLAD [41] and VL-LTR [49] directly fine-
tune the entire model, while LPT [10] incorporates external
knowledge. Despite promising results, they face fundamen-
tal trade-offs between performance and efficiency [47, 59].
Parameter-Efficient Fine-tuning (PEFT). PEFT enables
efficient model adaptation while avoiding the computational
overhead of full fine-tuning [15, 23]. By modifying only
a small subset of parameters, PEFT achieves comparable
performance with significantly reduced costs [20]. Current
approaches include additive methods such as adapters [23]
and LoRA [25], and selective methods BifFit [57] or Diff-
Prune [17]. However, these methods are highly sensitive
to hyperparameter choices, including LoRA’s rank, adapter
dimensions, and selection criteria [33, 47]. Our empirical
study reveals that while individual hyperparameters show
monotonic trends, their combinations lead to complex, non-
monotonic effects. This makes manual optimization both
time-consuming and suboptimal, especially given the mixed
discrete-continuous nature of these hyperparameters [4, 47].
Meta-Learning for Hyperparameter Optimization. Tra-
ditional hyperparameter optimization through random
search [2] or Bayesian optimization [48] struggles with
PEFT scenarios, as they ignore structural relationships be-
tween network modules and require expensive sequen-
tial optimization. While methods like population-based
training [26] and BOHB [11] attempt parallel optimiza-
tion, they remain computationally intensive. Meta-learning
approaches such as MAML [12] and Meta-SGD [35]
demonstrate effective learning-to-learn strategies, with on-
line meta-learning [13, 36–38] enabling continuous adap-
tation. Neural architecture optimization methods, includ-
ing DARTS [19] and Auto-Meta [30], successfully apply
meta-learning principles. However, existing approaches fo-
cus primarily on general hyperparameters [1] or architec-
ture choices [65] without addressing PEFT-specific chal-
lenges. The complex interdependencies in PEFT meth-
ods [20, 24, 25] create a mixed discrete-continuous opti-
mization problem requiring specialized solutions.

3. Method
We have made two key observations in Section 1: 1) addi-
tive PEFT methods excel at tail classes, and 2) their hyper-
parameters exhibit complex non-monotonic combination
effects. In Section 3.1, we give a general formulation for
additive PEFT methods and elaborate on their specific hy-
perparameters, such as discrete layer positions and continu-
ous scaling factors. The results of PEFT in Figure 1(c)-(d)
show high sensitivity to the values of hyperparameters. We
thus explore hyperparameter optimization. In Section 3.2,
we formalize the manual hyperparameter optimization as
a mixed integer non-linear programming (MINLP) prob-
lem, which is impractical to solve for deep learning models.
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Figure 2. Architecture and optimization framework for MetaPEFT. In Figures (a)-(c), we illustrate how our proposed modulator γ
is integrated with three representative additive PEFT methods: (a) AdaptFormer with modulated up/down projections (Wup/Wdown), (b)
LoRA with modulated low-rank decomposition matrices (A/B), and (c) Adapter with modulated projection layers (Wup/Wdown). The
σ denotes the non-linear activation function (e.g., ReLU). In Figure (d), we show our bi-level optimization framework. The inner loop
optimizes PEFT parameters ϕ on training data Dtrain, and the outer loop updates modulator γ on validation data Dval sampled from the
training set. The symbol N× indicates the operation is repeated for N attention blocks (e.g., N=12 for ViT-B/16).

In Section 3.3, we propose our approach, MetaPEFT. We
unify both discrete and continuous hyperparameters by con-
verting them into scalars, each applied independently to a
specific network position, and optimize them end-to-endly.

3.1. PEFT and Its Hyperparameters
Parameter Efficient Fine-Tuning (PEFT). Given a pre-
trained model parameterized by θ, PEFT transfers pre-
trained representations by updating only a small set of pa-
rameters ϕ, i.e., its dimension is usually dim(ϕ) ≪ dim(θ):

y = f(x; θ, ϕ), (1)

where x is the input and y is the output representation. θ is
kept frozen during updating, and only ϕ is updated. In this
work, we focus on additive PEFT methods for their high
effectiveness (clarified in Section 1). While non-additive
methods modify fixed parameters in the pre-trained model
(i.e., ϕ ∈ θ), additive methods introduce new parameters ϕ
to carefully selected positions in the model:

y = f(x; θ) + 1p(α ·∆(x;ϕ)), (2)

where x ∈ Rd is the intermediate feature at position p, f(·)
is the original layer operation (e.g., linear transformation,
attention projections or MLP) with parameters θ, ∆(x;ϕ)
is the additive PEFT module parameterized by ϕ, α is the
scaling factor, and 1p ∈ {0, 1} indicates whether the PEFT
module is used (1) or not (0) at position p. This formulation
reveals why additive PEFT achieves improved overall per-
formance and tail-class feature discrimination (Section 1):
1p allows adaptation at crucial positions, while α precisely
controls the adaptation strength, enabling effective feature
adjustment, especially for data-scarce tail classes.

Fomula 2 is for general additive PEFT methods. Dif-
ferent methods have distinct ∆(x;ϕ) designs, as shown in

Figure 2 (a)-(c) in yellow color. For example, LoRA [25]
introduces low-rank decomposition of weight W (i.e., ϕ =
{A,B}), which can be formulated as:

y = (x ·W ) + 1p(α · x ·BA⊤), (3)

and Adapter/AdaptFormer introduce up/down projections
(i.e., ϕ = {Wdown,Wup}) and activation σ, formulated as:

y = f(x; θ) + 1p (α ·Wup · σ (Wdown · x)) . (4)

Block Depth d and Intra-block Position s. In transformer
architectures, the position p in Formula 2 consists of two
discrete dimensions: block depth d ∈ {1, ..., L} and intra-
block position s ∈ S, where L is the total number of lay-
ers (e.g., 12 for ViT-B/16) and S is the set of insertion po-
sitions within a transformer block (i.e., Q/K/V projection
layers, attention output layer, and FFN layer). Therefore,
1p can be also written as 1d,s. Deeper d and s generally
yield higher accuracy with improved tail-class separation
(Figure 1(c)). However, these discrete parameters cannot
be optimized through gradient descent, yet manual hyper-
parameter optimization often leads to unexpected perfor-
mance drops (Figure 1(c)). In the following subsections,
we will introduce an equivalent way of optimizing them but
in an end-to-end manner.
Scaling Factor α. The scaling factor α in Formula 2 is a
continuous hyperparameter with a range of (0,∞). Empir-
ically, α is usually set within [0.001, 1] or start searching
from 0.1 [5]. It is a hyperparameter used in the forward
process of the model training and controls the weight of
adding the PEFT representations to the original pre-trained
features. In the Appendix, we justify its relationship with
the learning rate. Please note that we do not meta-learn the
learning rate as they are not specific to PEFT.



3.2. Limitations of Manual Optimization
Our empirical study (Section 1) has shown that the joint
optimization of hyperparameters exhibits complex, non-
monotonic interactions. This makes heuristic or exhaus-
tive search inefficient and challenging. In this section, we
further theoretically justify that this optimization objective
is intractable, and identify its core challenge as a mixed
discrete-continuous (MINLP) problem.
Optimization Objective. Manual optimization performs
exhaustive evaluations of configurations. Its optimization
objective can be formulated as follows:

max
d,s,α

Aval(ϕ
∗
d,s,α;Dval),

s.t. d ∈ {1, ..., L}, s ∈ S, α > 0,

ϕ∗
d,s,α = argmin

ϕ
Ltrain(ϕ, d, s, α;Dtrain),

(5)

where ϕ∗
d,s,α denotes the optimal PEFT parameters under

the given hyperparameter configuration {d, s, α}. Aval de-
notes the validation accuracy, and Ltrain denotes the train-
ing loss (Logit Adjustment [42] loss, in our case).
MINLP Problem. The optimization objective fomula 5
forms a Mixed Integer Non-Linear Programming (MINLP)
problem. This poses two key challenges. First, the mix
of continuous variable α and discrete variables d, s makes
this problem non-differentiable, preventing the direct use
of gradient-descent-based optimization methods. We also
prove this problem is NP-hard in the Appendix. Second,
the problem has a large discrete configuration space, i.e.,
O(L|S|Nα). This makes exhaustive search approaches
computationally infeasible, e.g., manually optimizing ViT-
B/16 (L=12, |S|=5) with only Nα=10 requires exploring
600 configurations.

3.3. Auto Optimization via Meta-Learning
To address this mixed discrete-continuous challenge, we
propose to unify all hyperparameters into a differentiable
modulator that can be optimized through gradient.

Unified Modulator. We unify the positional indicator 1p

and scaling factor α (in Equation 2) into a single differen-
tiable modulator γ ∈ R, as illustrated by pink in Figure 2:

y = f(x; θ) + γ ·∆(x;ϕ). (6)

This design turns the MINLP problem (Equation 5) into
a continuous optimization. Concretely, when γ ≈ 0, it
suppresses the PEFT module’s contribution to zero, func-
tionally equivalent to 1p = 0; when γ > 0, it controls
both module activation (i.e., continuous relaxation of 1p)
and update magnitude (role of α). In practice, we initial-
ize γ = 1.0 to preserve the model’s pre-trained behavior
during the first inner loop (note that while PEFT modules’

zero-initialization preserves pre-trained behavior at the first
training step, γ remains frozen during the first inner loop),
and adopt softplus activation to ensure non-negativity and
numerical stability of γ.

Bi-Level Optimization Framework. The continuous γ
allows optimization through gradients on the validation set.
We reformulate the optimization objective 5 as follows:

min
γ∈R+

LLA(ϕ
∗
γ ;Dval),

s.t. ϕ∗
γ = argmin

ϕ
LLA(ϕ, γ;Dtrain),

(7)

where LLA denotes the Logit Adjustment [42] loss. We
solve this bi-level optimization by alternating inner loop

ϕt+1 = ϕt − ηϕ∇ϕLLA(ϕt, γt;Dtrain) (8)

and outer loop

γt+1 = γt − ηγ∇γLLA(ϕt+1;Dval), (9)

where ηϕ and ηγ are learning rates for inner and outer loops,
respectively. The inner loop optimizes PEFT parameters
with frozen modulator γ, while the outer loop updates mod-
ulator γ with frozen PEFT parameters. In practice, for each
outer loop, we randomly sample 20% of training data as
Dval. This sampling strategy serves as an implicit regular-
ization, i.e., it reduces hyperparameter overfitting by expos-
ing the optimization to diverse data subsets. This strategy
particularly benefits tail classes where overfitting is severe.
Besides, we alternate between inner/outer loops every K
inner steps (K is discussed in Section 4). This alternating
strategy balances sufficient optimization of PEFT parame-
ters while ensuring timely modulator updates.

4. Experiments
4.1. Model Adaptation Scenarios
To comprehensively evaluate our method’s effectiveness in
addressing core challenges in RS and natural image do-
mains, we design experiments in three transfer-learning
scenarios. These scenarios systematically validate our
method’s capability in handling spectral diversity, data
scarcity, and long-tailed distribution issues in both RS and
natural image domains.
Natural Vision Domain Adaptation. In the natural im-
age domain, we use three standard long-tailed benchmarks:
CIFAR100-IR100 [31] (50K samples, 100 classes, imbal-
ance ratio 100), Places-LT [39, 61] (62K samples, 365
classes, imbalance ratio 996), and iNaturalist-2018 [51]
(437.5K samples, 8, 142 species, imbalance ratio 500).
Each dataset has varying imbalance ratios, thus can help es-
tablish our method’s baseline performance on conventional
long-tailed benchmarks.



Natural Vision to RS Domain Adaptation. To evalu-
ate our method’s cross-domain adaptation and data scarcity
handling abilities, we transfer an IN21K pre-trained ViT-
B/16 model to one representative optical remote sensing
(ORS) dataset, DOTA [9, 28, 53], which contains 188K im-
ages across 15 object categories. DOTA exhibits a signif-
icant imbalance ratio of 86, with class distribution (in the
whole dataset) ranging from 28.35% (ship) to 0.64% (he-
licopter). Following standard practice, we categorize the
classes into the head (6 classes, >5% samples), middle (3
classes, 1-5%), and tail (6 classes, <1%) groups.
Cross-Spectral RS Domain Adaptation. To validate our
method’s effectiveness in handling spectral diversity, we
transfer the optical pre-trained model, SatMAE-L/16 (non-
temporal edition) [7], to the synthetic aperture radar (SAR)
domain using the FUSRS v2 dataset [50]. This dataset com-
bines FUSAR-Ship [22] and SRSDD [34] datasets, contain-
ing 5,261 high-resolution (1m-10m) SAR ship images for
training. We use categories with < 20% training samples as
tail classes. The large domain gap between ORS and SAR,
coupled with the small dataset and class imbalance, makes
this adaptation scenario particularly challenging.

4.2. Implementation Details

Our MetaPEFT alternates between training PEFT modules
and learning their modulators through a bi-level optimiza-
tion framework. Here, we detail the implementation of both
alternate steps.
PEFT Configuration. We adopt a principled approach [43]
to determine PEFT module sizes based on dataset com-
plexity. We control the size of the PEFT module based
on setting up different ranks in LoRA or different adapter
dimensions in Adapter/AdaptFormer. For simplicity, we
use the term “PEFT dimension” in the following texts to
represent the rank/dimension. For natural vision datasets,
we set PEFT dimension proportional to the number of
classes while maintaining parameter efficiency: rank 4 for
CIFAR100-IR100 (100 classes), rank 8 for Places-LT (365
classes), and rank 256 for iNaturalist-2018 (8, 142 classes).
For RS datasets, considering their domain-specific charac-
teristics and limited data, we empirically set the PEFT di-
mension as 4 after validation experiments showing little
gains from using larger PEFT dimensions.
Meta Training Protocol. Our training follows the bi-level
optimization framework elaborated in Section 3.3. The in-
ner loop optimizes PEFT parameters using SGD with a base
learning rate of ηϕ = 1 × 10−2 using a Logit Adjustment
loss [42]. We use a base batch size 128 with square-root
scaling [16] for learning rate adjustment. For the outer
(meta) loop, we randomly hold out 20% of training data
stratified by class to maintain class distribution. The outer
loop optimizes our proposed modulator using Adam with
the meta-learning rate ηγ (hyperparameter that varies de-

pending on the dataset and backbone) and L2 regulariza-
tion. It has the same loss function as the inner loop. Es-
pecially for RS datasets, we make specific adjustments:
DOTA uses 20 inner loop steps with batch size 512, while
FUSRS uses 10 steps with batch size 256 and a reduced
learning rate due to limited data. We implement early stop-
ping when validation accuracy shows less than 0.3% im-
provement over 3 consecutive epochs. All experiments are
conducted on four NVIDIA V100/3090 GPUs, with training
times ranging from 2 hours (CIFAR100-IR100) to 6 hours
(iNaturalist-2018). More implementation details are avail-
able in the Appendix.
Fair Comparison. we ensure a fair comparison between
low-rank and other additive methods. Concretely, we en-
sure a similar module size between LoRA and adapters by
fixing the rank of LoRA and the adapter’s hidden dimen-
sion to a comparable size. We follow the setting in [47]
to set higher hidden dimensions for larger classifier heads.
The learnable parameters in different methods on different
datasets are provided in Appendix Table S2.

4.3. Ablation Studies and Method Comparisons

Our observations in Section 1 identify three key hyperpa-
rameters: intra-block position, block depth, and scaling fac-
tor. In this section, we provide detailed ablation results for
each of them and their combinations.
Impact of intra-block position. We examine the effective-
ness of different positions (projection layers) within an at-
tention block. As shown in Table 2, the MLP1 (i.e., the
first FFN layer) achieves the best performance (93.4% av-
erage accuracy). It performs particularly better (than oth-
ers) in tail classes (91.6%). The results also show that FFN
positions (MLP1, MLP2) outperform attention-related po-
sitions (K, Q, V, Out), with performance gaps ranging from
0.7% to 2.8%. This might be because FFN layers focus
on feature transformation, while attention layers primarily
handle spatial correlations. This feature makes FFN lay-
ers more suitable for domain adaptation, where the distri-
bution shift is the main challenge. Besides, in Table 1, we
examine different layer combinations. Results show that at-
tention and FFN modules are complementary to each other
(e.g., ATTN+FFN obtained 1.3% improvement on DOTA’s
tail classes). We think this complementarity is because at-
tention focuses on global context and FFN processes local
features. Combining them results in more robustness.
Impact of block depth. Figure 1(c) shows the impact of
cumulative last-N blocks. As an extended investigation,
in Table 3, we show the results of different block groups.
The middle-lower blocks (L3-5) achieve the best perfor-
mance (91.9%), followed closely by middle-upper blocks
(L6-8). Intriguingly, the deepest blocks (L9-11) show the
largest performance drop (3.2%). This effect is amplified
for tail classes, where the gap between optimal and sub-



Position
CIFAR100 iNat2018 Places-LT DOTA

Avg Avgtail

Head Med Tail Head Med Tail Head Med Tail Head Med Tail

ATTN 92.2 87.7 86.3 67.9 76.3 76.7 48.4 48.3 45.7 94.1 94.7 91.1 75.8 74.9
FFN 92.4 87.9 86.8 66.7 75.6 76.9 48.6 47.9 45.6 94.6 94.8 91.4 75.8 75.2
ATTN-FFN 92.3 88.1 86.6 67.7 76.8 77.5 48.2 48.3 45.5 94.6 95.4 92.4 76.1 75.5

Table 1. Applying PEFT on Different Intra-Block Layer Positions. We compare three LoRA insertion positions within the attention
block: attention-projection-layers-only (ATTN), feedforward-network-only (FFN), and combined (ATTN-FFN) across four adaptation
settings: IN21K pre-trained ViT-B/16 → {CIFAR100, iNaturalist2018, Places-LT, DOTA}. Results reported in Accuracy (%). Results
show that combined positions yield slightly better overall performance and tail-class accuracy.

Module Position
Accuracy (%)

Head Med Tail Avg

ATTN

K 91.6 93.0 87.7 90.6
Q 91.4 93.1 90.0 91.5
V 94.0 94.5 90.2 92.7
Out 93.6 94.1 90.0 92.3

FFN
MLP 1 94.6 94.6 91.6 93.4
MLP 2 93.6 94.3 90.6 92.7

Table 2. Applying PEFT on Layer-Wise Intra-Block Positions
for IN21K→DOTA. We compare LoRA’s different layer-wise in-
sertion positions within the attention block. ATTN in Table 1 now
has 4 versions due to 4 kinds of projection layers (Q/K/V/Out) in
the attention computation&output of the attention block. Results
reported in Accuracy (%). LoRA on the first FFN layer (MLP 1)
yields the best performance with an average accuracy of 93.4%.

optimal block reaches 4.5%. These observations suggest
PEFT modules should be applied with a stronger scaling
factor on middle blocks rather than being applied uniformly
or only to deep blocks. In addition, we also visualized the
effect of using joint hyperparameters in Figure 1. We will
provide more detailed results (including head/med/tail per-
formances) in the supplementary materials.
Random sampling strategy. We study how the proportion
of training data in the outer loop impacts performance. As
shown in Table 6, increasing the sampling ratio from 10% to
30% leads to consistent performance improvements across
all classes, with the most significant gains observed in tail
classes (from 90.8% to 93.4%). This trend suggests that in-
sufficient sampling may lead to sub-optimal modulator op-
timization. We adopt 20% as our default setting in main
comparisons, as it provides a good balance between perfor-
mance (94.2% average accuracy) and training time.
Compare with state-of-the-art. We evaluate our method
by incorporating it into three representative additive PEFT
methods. Results in Table 4 reveal three key findings.
First, our method shows strong synergy with LoRA, con-
sistently improving its performance across all metrics and
achieving the highest average accuracy (+1.13% to 83.97%

Block Group Many Med Few Avg Drop (%)

L9-11 88.1 89.8 88.8 89.0 3.2
L6-8 92.3 93.5 89.3 91.6 0.3
L3-5 92.4 93.7 89.8 91.9 -
L0-2 90.5 92.8 88.4 90.6 1.4

Table 3. Ablate Different Block Depths for IN21K→DOTA
(%). We analyze the impact of applying LoRA across differ-
ent transformer blocks. Results reported in Accuracy (%). Re-
sults indicate that using LoRA on the middle-lower blocks (L3-
5) achieves the best performance (91.9% overall accuracy), while
the deepest blocks (L9-11) show an unexpected performance drop.
This suggests that we should apply a higher scaling factor for
LoRA in intermediate blocks.

for LoRA). Second, our method demonstrates particular
strength in handling large domain gaps. In the challeng-
ing SatMAE→SAR scenario, where the domain shift is
most significant, our method achieves its largest improve-
ment on tail classes (+1.2% for LoRA). This potentially
stems from our method’s ability to selectively strengthen or
weaken different blocks’ adaptation based on their domain-
specific importance. Third, the consistent improvements
over iNat2018 (8, 142 classes) demonstrate our method’s
capability to tackle extreme long-tailed scenarios. Even
with such extensive class space, our method still provides
stable gains (+0.8% on tail classes). This is because our
random sampling strategy forces the model to optimize the
modulator on diverse subsets of data in each iteration, re-
ducing model overfitting to some extent.
“Are we learning a better representation?” Feature dis-
tance analysis in Table 5 unveils why our method can im-
prove the tail-class performance. First, all additive methods
show higher inter-class distances than non-additive ones,
the gap is particularly pronounced for tail classes (0.77-
0.78 vs. 0.72). Second, when combined with LoRA, our
method achieves the best feature separation (0.85 for the
head, 0.82 for the tail) and reduces the performance gap
between head and tail class groups (from 0.04 to 0.03).
This balanced improvement stems from our dynamic mod-
ulation mechanism, which automatically adjusts adaptation



Category Method
IN21K → iNat2018 IN21K → DOTA SatMAE → SAR

Avgtail Avg
Head Med Tail Head Med Tail Head Tail

Non-additive
VPT-Shallow 57.5 65.5 65.9 85.4 89.0 82.4 39.8 68.4 72.23 69.24
BitFit 57.6 67.3 68.4 92.0 93.7 89.1 32.1 74.7 77.40 71.86
VPT-Deep 64.9 74.2 75.9 92.1 93.5 90.2 30.6 50.0 72.03 71.43

Additive

Adapter 67.9 76.8 77.7 93.2 94.9 90.6 37.9 75.8 81.37 76.85
w/ Ours 68.2 76.9 78.1 93.2 95.1 90.7 37.7 76.0 81.60 76.99

AdaptFormer 68.7 76.7 78.0 93.2 94.9 90.1 35.3 76.7 81.60 76.70
w/ Ours 68.7 76.6 78.2 92.7 94.6 90.1 35.5 76.4 81.57 76.60

LoRA 69.1 77.3 78.5 93.1 93.4 90.7 40.0 72.1 80.43 76.78
w/ Ours 70.2 78.6 79.3 93.9 95.1 91.4 40.6 74.2 81.63 77.91

Table 4. Comparing different PEFT methods w/ or w/o ours. We evaluate three transfer scenarios (IN21K→iNat2018, IN21K→DOTA,
SatMAE→SAR) using non-additive methods (VPT, BitFit) and additive methods (Adapter, LoRA, AdaptFormer). Performance is mea-
sured across head, medium, and tail classes for each dataset (the SAR dataset has only head and tail) and reported in Accuracy (%).
“Avgtail” shows mean performance on tail classes, and “Avg” is the macro-average across all class splits. Results show that our method
consistently improves additive methods, with LoRA achieving the highest tail-class performance (81.63%). Ours are marked in gray .

Category Method
Inter-class Distance

Head Tail

Non-additive
VPT-Shallow 0.65 0.58
BitFit 0.81 0.75
VPT-Deep 0.81 0.72

Additive

Adapter 0.83 0.77
w/ Ours 0.84 0.79

AdaptFormer 0.83 0.78
w/ Ours 0.83 0.77

LoRA 0.82 0.78
w/ Ours 0.83 0.80

Table 5. Inter-Class Feature Distance. We measure the inter-
class cosine distance between head classes, and between tail
classes. Results are reported on transfer scenario IN21K→DOTA
using average cosine distance, where higher values indicate better
class separation. Our method (marked in gray ) achieves the best
feature separation when combined with LoRA.

strength across different intra-block positions and block
depths. Finally, the low distance of VPT-Shallow confirms
our assumption that input-only modifications are insuffi-
cient for complex domain adaptation.
Impact of rank in low-rank methods. In Table 4, we
found rank r one critical hyperparameter for low-rank meth-
ods (e.g., LoRA and its variants). It significantly affects the
performance and size of PEFT modules. Our experiments
also demonstrate this rank r is independent of scaler and
positions. We provide detailed observations about rank se-
lection in the Appendix.
Computational overhead. Our MetaPEFT archives 1.13
percentage points higher accuracy than LoRA (Table 4)
with minimal overhead (e.g. only 0.0008M params on ViT-
B/16). The detailed computational overhead is provided in
the Appendix.

Ratio Head Med Tail Avg ∆Tail (%)

10% 93.4 94.2 90.8 92.8 -2.6
20% 94.7 95.4 92.5 94.2 -1.0
30% 95.0 95.8 93.4 94.7 -

Table 6. Impact of Sampling Strategies (%). We evaluate dif-
ferent sampling ratios in the outer loop of MetaPEFT. Results
reported in Accuracy (%). While 30% sampling achieves the best
performance (94.7% average accuracy), we adopt 20% in our de-
fault setting due to time constraints.

5. Conclusions
In this paper, we identified that additive PEFT methods out-
perform non-additive ones, but their performance is highly
sensitive to insertion positions and scaling factors. We ex-
tensively evaluated this phenomenon on five transfer learn-
ing scenarios in both RS and natural image domains. To
address this challenge, we proposed MetaPEFT, a meta-
learning framework that converts discrete and continuous
hyperparameters into a unified differentiable modulator op-
timized through bi-level optimization. Our approach effec-
tively handles the spectral diversity and long-tailed data dis-
tributions without requiring extensive manual tuning. We
discuss the limitations and future work in the Appendix.
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